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PLL Featured Examples

• “Phase Noise at PLL Output” on page 1-2
• “PLL Design and Verification Using Data Sheet Specifications” on page 1-12
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Phase Noise at PLL Output
This example shows how to predict the phase noise at the output of a phase-locked loop (PLL),
simulate the PLL using the PLL Testbench, and compare the simulation results to theoretical
predictions.

This example demonstrates three phase noise effects, individually or combined, depending on the
configuration you choose:

1 Reference modulation or phase noise
2 VCO phase noise
3 VCO phase noise subsampled by the feedback prescaler

Open the model PllPhaseNoiseExample.slx.

open_system('PllPhaseNoiseExample.slx');

This example uses an Integer N PLL with Single Modulus Prescaler from the Mixed Signal Blockset™.

The PLL Testbench generates the reference input signal for the PLL and measures the phase spectral
density at the output of the PLL.

The optional PRBS6 reference phase modulation in this model is used to contrast the response to
reference phase variation with the response to VCO phase noise.

The low pass resamplers at the inputs to the spectrum estimators are anti-aliasing filters. These
filters convert the variable step discrete signals to the fixed step discrete signals required by the
spectrum estimators.

The spectra of the PLL input and output signals are estimated and logged in the base workspace so
that you can compare the simulation results to the results of the theoretical calculations.
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The oscilloscope in the example model provides a progress indicator for the simulation.

To evaluate the behavior of the PLL under a variety of conditions, use a separate workspace file for
each different set of conditions. This example provides five such supporting .mat files. All of them
produce the same loop transient response.

1 Baseline.mat - As close to ideal as possible. Use to evaluate numerical noise introduced by the
model and simulator.

2 ReferenceModulation.mat - Introduce reference phase modulation. Use to evaluate the phase
transfer function of the PLL.

3 VCOPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio equal to one. Use to
evaluate the PLL control loop's error function.

4 InbandPhaseNoise.mat - Introduce VCO phase noise and a prescaler ratio greater than one.
Use to evaluate the effect of the prescaler ration on the PLL control loop's error function.

5 TotalPhaseNoise.mat - All phase noise sources are enabled, and the prescaler ratio is greater
than one.

Theoretical Calculations

This section shows how to calculate the expected response of the PLL.

The target loop bandwidth of the PLL is 2 MHz with a 45 degree phase margin. The loop filter
components are scaled to practical level and the charge pump output current is scaled by the same
factor to maintain the same loop dynamics.

The function getPllLoopResponse calculates the loop gain as a function of frequency and then
calculates the expected response to signals from outside or inside the PLL. Define the input
parameters such as charge pump output current, VCO sensitivity, prescaler ratio and passive loop
filter component values for the getPllLoopResponse function to use.

PllKphi = 5e-3;     % Charge Pump output current
PllKvco = 100e6;    % VCO sensitivity
PllN    = 70;       % Prescaler ratio
PllR2   = 1.33e3;   % Loop filter resistance for second order response (ohms)
PllR3   = 1.7e4;    % Loop filter resistance for third order response (ohms)
PllR4   = 0;        % Loop filter resistance for fourth order response (ohms)
PllC1   = 1.31e-11; % Loop filter direct capacitance (F)
PllC2   = 1.44e-10; % Loop filter capacitance for second order response (F)
PllC3   = 9.41e-13; % Loop filter capacitance for third order response (F)
PllC4   = 0;        % Loop filter capacitance for fourth order response (F)

The script prepareExpectedSpectra computes the spectral density of the reference phase
modulation and the VCO output phase noise. The script then also combines the result with the PLL
loop response to obtain the phase noise spectral density at the output of the PLL. The reference
phase modulation is a deterministic process for which the amplitude of the spectral components is
expressed as a fraction of the carrier amplitude (dBc). In conttrast, the VCO phase noise is a
stochastic process for which the spectral density is expressed in dBc/Hz.

Define the input parameters for the prepareExpectedSpectra script such as reference input
frequency, number of reference cycles per symbol of PRBS6 phase modulation data pattern,
amplitude of a single spectral component of the PRBS6 reference phase modulation, resolution
bandwidth to evaluate spectra with phase noise, frequency offset vector, and phase noise spectral
densities at specified frequency offset.
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PllAddPhaseNoise = 'on'; % Enable VCO phase noise
PllFoffset    = [30e3 100e3 1e6 3e6 10e6]; % VCO offset frequencies (Hz)
PllPhaseNoise = [-56 -106 -132 -143 -152]; % VCO output phase noise (dBc/Hz)
CfgSelectRefMod = '0';   % Enable reference phase noise modulation
CfgRef  = 30e6;          % Reference frequency
CfgCyclesPerSymbol = 2;  % Reference cycles per PRBS6 modulation symbol
CfgModLevel   = -110;    % Reference phase modulation level (dBc/Hz)
CfgResBandwidth = 100e3; % PLL Testbench resolution bandwidth
CfgTargetSpectrum = [100e3 -145;1e6 -135;3e6 -140;10e6 -150];
                         % PLL Testbench target phase noise (dBc/Hz)

If the variable WorkspaceFile exists and points to a file that can be loaded, load that file into the
workspace. To use a configuration supplied with this example, set the value of WorkspaceFile to the
name of the file for that configuration.

if exist('WorkspaceFile','var') && exist(WorkspaceFile,'file')
    load(WorkspaceFile);
end

Analyze the PLL control loop using the getPllLoopResponse function. The outputs of this function
are:

• LoopFrequency - The frequency points at which the expected responses is calculated.
• LoopZofs - The transfer impedance of the loop filter as a function of the frequency.
• LoopGofs - The loop gain from the output of the prescaler to the input of the VCO, including the

VCO voltage sensitivity. Note that the prescaler ratio is not included in this output, but is included
in the closed loop transfer functions.

• LoopHofs - The closed loop phase transfer function fromt the PLL reference input to the PLL
output.

• LoopEofs - The closed loop phase error transfer function with respect to the VCO output.

[LoopFrequency, LoopZofs, LoopGofs, LoopHofs, LoopEofs, LoopPhStep] = ...
    getPllLoopResponse([0,PllR2,PllR3,PllR4],[PllC1,PllC2,PllC3,PllC4], ...
                        PllKphi,PllKvco,PllN);

Organize the computation of expected spectral density to place spectral components directly into the
frequency bins.

The workspace variables for the expected spectral density are:

• ExpInputFrequency - A vector of frequencies for which the expected input spectrum is
calculated (Hz).

• ExpInputSpectrum - A vector of expected spectrum values at the reference input to the PLL
(dBm into a one ohm load at a resolution bandwidth of |CfgResBandwidth|0.

• ExpOutputFrequency - A vector of frequencies for which the expected output spectrum is
calculated (Hz).

• ExpOutputSpectrum - A vector of expected spectrum values at the PLL output (dBm into a one
ohm load at a resolution bandwidth of CfgResBandwidth).

prepareExpectedSpectra;

Examine Expected Results

In this section, examine the expected PLL behavior.
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Start by looking at the closed loop response of the PLL. Consider three fundamental responses:
transient response, transfer function, and error function.

Transient response

In most PLL applications, the loop transient response is most important when the loop is initially
acquiring phase lock. For very small initial frequency offsets or for relatively high closed loop
bandwidth, the transient response predicts the loop acquisition time reasonably accurately. However,
in many cases, the loop transient response only represents the response during phase acquisition,
after frequency acquisition has already occurred. This example only addresses the phase acquisition
time.

Plot the loop transient response of the PLL.

figure(1);
plot(LoopPhStep.Time,LoopPhStep.Data);
title({'PLL Loop Transient Response';'To Unit Input Phase Step'});
xlabel('Seconds');
ylabel('Output Phase');

Transfer function

The transfer function from the reference input to the PLL output can be important either when the
PLL is expected to track a modulated input very accurately or when it is expected to filter out noise
from a noisy input.

Create a log-log plot of the PLL transfer function.
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figure(2);
semilogx(LoopFrequency,20*log10(abs(LoopHofs)));
title('PLL Transfer Function');
xlabel('Hz');
ylabel('dB');

Error function

The PLL control loop is expected to reject phase noise generated inside the PLL itself, such as VCO
phase noise. The transfer function between the VCO phase noise and the PLL output is sometimes
called the loop error function. Examining this transfer function helps compensate the loop error
before it is applied to another noise source.

Create a log-log plot of the PLL loop error function.

figure(3);
semilogx(LoopFrequency,20*log10(abs(LoopEofs)));
title('PLL Loop Error Function');
xlabel('Hz');
ylabel('dB');
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Plot the total expected phase noise at the PLL output.

figure(4);
plot(ExpOutputFrequency,ExpOutputSpectrum);
title('PLL Output Spectrum');
xlabel('Hz');
ylabel('dBm into 1 ohm');
xlim([PllN*CfgRef-2*PllFoffset(end), PllN*CfgRef+2*PllFoffset(end)]);
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The phaseNoiseMeasure function is a callback function used by the PLL Testbench. It displays the
target output phase noise spectral density along with the simulated or expected phase noise spectral
density.

To compare the expected output phase noise to a specific design target, define the workspace
variable CfgTargetSpectrum. CfgTargetSpectrum consists of two column arrays that specify the
target phase noise at the output of the PLL. The first column specifies the frequency offsets in Hz and
the second column specifies the corresponding phase noise spectral density if dBc/Hz. The PLL
Testbench uses the callback function phaseNoiseMeasure to display the expected and simulated
phase noise spectral density.

View the expected PLL output phase noise in units of dBc/Hz.

[~] = phaseNoiseMeasure(ExpOutputFrequency,ExpOutputSpectrum,...
    CfgResBandwidth, CfgTargetSpectrum(:,1).','on','5', ...
    CfgTargetSpectrum(:,2).');
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If the loop response is not satisfactory, you might look at more detailed results such as the loop filter
transimpedance (LoopZofs) to get additional insights that could help you improve the PLL design.

Run the Simultaion

While the configuration process is entirely straightforward, there are a lot of parameters to be
configured. Use the configureExamplePLL script to configure the PLL Simulink® model, then
exedcute the model.

configureExamplePll;
SimOut = sim('PllPhaseNoiseExample');

To make the plotting easier, transform the results into the following four workspace variables:

• SimInputFrequency - A vector of frequencies for which the input spectrum of the simulation is
stored (Hz).

• SimInputSpectrum - A vector of spectrum values at the reference input to the PLL (dBm into a
one ohm load at a resolution bandwidth of CfgResBandwidth).

• SimOutputFrequency - A vector of frequencies for which the output spectrum of the simulation
is calculated (Hz).

• SimOutputSpectrum - A vector of simulated spectrum values at the PLL output (dBm into a one
ohm load at a resolution bandwidth of CfgResBandwidth).

Make the results easier to plot from the workspace.

SimInputFrequency = reshape(SimOut.InputFrequency.Data(:,end),1,[]);
SimInputSpectrum = reshape(SimOut.InputSpectrum.Data(:,end),1,[]);
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SimOutputFrequency = reshape(SimOut.OutputFrequency.Data(:,end),1,[]);
SimOutputSpectrum = reshape(SimOut.OutputSpectrum.Data(:,end),1,[]);

Compare Expected and Simulated Results

Compare expected and simulated phase noise at the PLL output.

figure(4);
plot(ExpOutputFrequency,ExpOutputSpectrum);
title('PLL Output Spectrum');
xlabel('Hz');
ylabel('dBm into 1 ohm');
xlim([PllN*CfgRef-2*PllFoffset(end), PllN*CfgRef+2*PllFoffset(end)]);
hold on;
plot(SimOutputFrequency,SimOutputSpectrum);
hold off;

View the expected PLL output phase noise in units of dBc/Hz.

[~] = phaseNoiseMeasure(SimOutputFrequency,SimOutputSpectrum,...
    SimOutputFrequency(2)-SimOutputFrequency(1),...
    CfgTargetSpectrum(:,1).','on','5',CfgTargetSpectrum(:,2).');
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Save the Configuration and Results

Save the entire workspace, including the system configuration in its current state and the results, to
a file. If the WorkspaceFile variable already exists, you can resave the current state to that file. To
save to a new file, change the value of WorkspaceFile.

if exist('WorkspaceFile','var')
    save(WorkspaceFile);
end

See Also
Integer N PLL with Single Modulus Prescaler | PLL Testbench | Variable Pulse Delay

More About
• “PLL Design and Verification Using Data Sheet Specifications” on page 1-12
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PLL Design and Verification Using Data Sheet Specifications
This example shows how to use Mixed-Signal Blockset™ to model a commercial off-the-shelf integer-
N phase-locked loop (PLL) with dual modulus prescaler operating around 4 GHz. You can verify the
PLL performance, including phase noise.

You can use PLL models to explore and design different loop filters, simulate different operating
frequencies, determine different divider ratios, or assess the frequency synthesizer performance once
embedded in a larger system. For example, Mixed-Signal Blockset PLL models can be helpful if you
need to integrate a PLL into a System on Chip or a System on Board.

For this example, use the data sheet of Skyworks SKY73134-11. This is a wideband PLL Frequency
Synthesizer operating between 350 MHz and 6.2 GHz.

Build VCO Model

Open the model VCO_model, which has VCO and VCO Testbench blocks from Mixed-Signal Blockset
connected together.

model = 'VCO_model';
open_system(model);

Inspect the data sheet to identify the characteristics of the voltage controlled oscillator (VCO). VCO is
the main component contributing to the phase noise of the PLL. Table 6 of the data sheet lists the
typical VCO sensitivity (Kvco) as 20 MHz/V. Set the Voltage Sensitivity of the VCO block to 20e6
Hz/V. The data sheet does not provide the free running frequency (Fo) of the VCO, so you can set it to
an arbitrary value close to the operting frequency. In this case, set Free running frequency to
3.9e9 Hz.

For this example, simulate the PLL behavior when the PLL locks around 4 GHz. Table 7 of the data
sheet lists the VCO phase noise profile as: around 4 GHz is,

• −105 dBc/Hz at 100 kHz
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• −131 dBc/Hz at 1 MHz
• −142 dBc/Hz at 3 MHz
• −152 dBc/Hz at 10 MHz

Use the phase noise profile to add phase noise impairment to the VCO. To speed up simulation, ignore
the phase noise data points at lower frequency offsets. Simulation takes longer to capture the phase
noise profile close to the carrier.

Measure VCO Phase Noise

The testbench provides the control voltage (Vctrl) stimulus to the VCO and measures the VCO phase
noise. The output frequency (F) of the VCO is :

Substituting the values for the output frequency, the free running frequency, and the voltage
sensitivity, the equation gives a control voltage of be 5 V.

Click on Autofill setup parameters and Autofill target metric buttons to automatically populate
the measurement parameters for both setup and target metric. The target metric provides the
anticipated phase noise profile for comparison with the simulation results. The testbench setup
properties define the signal sampling frequency and the measurement resolution bandwidth.

To speed up simulation time, reduce Sampling frequency to four times the lock frequency, 4*4 GHz,
and reduce No. of spectral averages to 4.

Run the simulation. Verify that the VCO model reproduces the phase noise profile specified in the
target metric.
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You can now proceed with modeling the complete PLL system and verify its phase noise performance.

Build PLL Model

From the Features section of the data sheet, see that this PLL is of type integer-N and it uses a dual
modulus prescaler. The data sheet also provides the settings for the prescaler. Hence, use the
Integer-N PLL with Dual Modulus Prescaler from Mixed-Signal Blockset.

bdclose(model);
model = 'PLL_model';
open_system(model);
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Open the mask of the PLL block and provide the specs for each of the subsystems:

• Phase Frequency Detector — For the phase frequency detector (PFD), the data sheet does not
provide any detail. Leave the deadband compensation to its default value.

• Charge Pump — For the charge pump, the data sheet provides the typical value for the current of
2.7 mA (data sheet, Table 5). Specify the same value in the PLL model.

• VCO — For the VCO, use the same specifications used in the Build VCO Model section. The
sensitivity is equal to 20 MHz/V. Specify a free running frequency that is close to the final locking
frequency, for example 4.18 GHz. Include phase noise with the same noise profile that you just
simulated.

• Divider — For the PLL to lock at 4.2 GHz when using a reference oscillator operating at 1.6 MHz
(data sheet, Figure 17), the divider ratio is equal to:

To achieve the effective divider ratio of 2625, set the Prescaler divider value to 16, Swallow
counter value to 17, and Program counter value to 163.

• Loop Filter — The data sheet provides the recommended loop filter component values in Figure
22. Manually input these values to implement the filter. Set Loop filter type to 3rd order passive.
Also set the loop filter component values:

C1 = 100e-12 F

C2 = 2.2e-9 F
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C3 = 100e-12 F

R2 = 10e3 

R3 = 2.2e3 

Verify the closed and open loop performance of the PLL with this implementation of the loop filter.
The resulting phase margin is 55 degrees. The phase margin along with the pole zero locations
confirm the stability of the PLL.
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Use this setup to design different loop filters and verify your design. For example, use this PLL over a
different operating frequency.

Finally, to verify the PLL locking behavior in the time domain, probe and plot the output signal of the
loop filter.

Measure PLL Performance

Connect the PLL to a Mixed-Signal Blockset PLL Testbench to validate its performance. The
testbench defines the stimuli used to test the PLL. In this case, use a square waveform with 1.6 MHz
frequency.

Set up the testbench to measure operating frequency, lock time, and phase noise. The data sheet
specifies a 1 ms lock time with 1 ppm frequency error, that is to say 4.2 kHz (Table 5). Provide the
same error tolerance. For measuring the phase noise, use a configuration similar to the one used for
the VCO, but reduce the resolution bandwidth for higher accuracy.

For the target metric, refer to the data sheet for both the lock time (Table 5) and the closed loop
phase noise measurements performed on the evaluation board (Figure 17). The phase noise profile
measured at 4.2 GHz is:
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• −98 dBc/Hz at 100 kHz
• −129 dBc/Hz at 1 MHz
• −150 dBc/Hz at 10 MHz

With this setup, run the PLL simulation and verify the performance.
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In this case, the simulation takes a few minutes. To speed up simulation time, you can relax the
settings for measuring the phase noise. For example, use a larger resolution bandwidth or reduce the
number of spectral averages.

The simulation results are in excellent agreement with the phase noise measurements reported in the
data sheet.

Reference

Skyworks SKY73134-11

Copyright(C) 2019 The MathWorks, Inc. All rights reserved.

See Also
Integer N PLL with Dual Modulus Prescaler | PLL Testbench | VCO | VCO Testbench

More About
• “Design and Evaluate Simple PLL Model”
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• “Phase Noise at PLL Output” on page 1-2
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ADC Featured Examples

• “Effect of Metastability Impairment in Flash ADC” on page 2-2
• “Design and Evaluate Interleaved ADC” on page 2-7
• “Design and Evaluate Successive Approximation ADC Using Stateflow” on page 2-16
• “Analyzing Simple ADC with Impairments” on page 2-24
• “Subranging ADC” on page 2-32
• “Measuring Offset and Gain Errors in ADC” on page 2-43
• “Compare SAR ADC to Ideal ADC” on page 2-47
• “ADC Linearity Measurement Using Histogram” on page 2-50
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Effect of Metastability Impairment in Flash ADC
This example shows how to customize a flash Analog to Digital Converter (ADC) by adding the
metastability probability as an impairment. You can measure the metastability probability impairment
to validate your implementation. The example also shows the effect of metastability on the dynamic
performance of the flash ADC. When the digital output from a comparator is ambiguous (neither zero
nor one), the output is defined as metastable. The ambiguous output is expressed as NaN. This
example model uses a MATLAB function block to add the metastability impairment to a flash ADC
architecture. Another subsystem reports the metastability probability on the fly.

Customize Flash ADC

Extract the inner structure of the flash ADC to add customized impairment. Add a Flash ADC block
from the Mixed-Signal Blockset™ library to a Simulink® canvas. Look under the mask to find the flat
structure of the ADC. Copy and paste the complete structure to another new blank canvas.

Delete the Clock Generator block because it is not used to provide the start conversion clock. An
external Stimuli subsystem is used for that purpose. The flash ADC now consists of two major
components:

• Flash ADC Comparators
• Fault Aware Ones Counter

Flash ADC Comparators

An N-bit flash ADC uses  comparators in parallel. The Flash ADC Comparators subsystem itself
is based on MATLAB® code. Before the simulation starts, the comparators calculate the individual
reference voltages and store them in a vector. On every specified edge, the input is compared to the
references using MATLAB's ability to compare vectors. This generates thermometer code similar to
the real flash ADC, without the lag from N individual comparator blocks in the model.

To create a 10- bit ADC, set Number of bits (nbits) to 10, Input Range to [-1 1], and INL Vector
to 0. Trigger type is kept at its default value Rising edge.

Fault Aware Ones Counter
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The Fault Aware Ones Counter subsystem implements the impairments in the flash ADC architecture.
Real ADCs handle conversion from thermometer to binary through logic circuits. This subsystem
takes the sum-of-elements of the vector stored by the comparators and applies that sum to a lookup
table to simulate missing codes, otherwise known as bubbles.

Set the Fault Aware Ones Counter parameters: Number of Bits (nbits) to 10, Input Range to [-1
1], and Bubble Codes to []. Trigger type is kept at its default value Rising edge.

Implement Metastability Probability as an Impairment to Flash ADC

To add metastability impairment, place a triggered subsystem with a MATLAB function block after the
Flash ADC Comparators subsystem. The MATLAB function block sets thermometer code signals to
NaNs with a probability from a uniform random number generator. The block resets the signals on the
next relevant edge which is why a triggered subsystem is used. Use this code to implement the
Metastability Impairment subsystem.

%  function y = metastability(u, Probability)
%   mult = ones(size(u));
%   mult(rand(size(u)) < Probability(1)) = NaN; % metastability = NaN
%   y = u .* mult;
%  end

Provide the metastability probability that you want to implement through a constant block connected
to the Probability port.

Implement Measuring Metastability Probability

To measure metastability impairment, count the number of NaNs encountered and divide that by the
number of total comparator outputs generated during the complete simulation. A simple Simulink
implementation of metastability probability measurement is:
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The Inports are:

• ADC output- Receives the output digital code generated by the flash ADC.

• Ready signal- Receives the ready signal which represents the rate at which the digital conversion
is taking place. The digital code gets generated at each rising edge of the signals received by
'Ready signal' port.

Simulation for Metastability Measurement

The model below combines the customized flash ADC with its output connected to the metastability
probability measurement system. In the model, you have a 10-bit flash ADC with metastability
probability of 1e-6 added. The Stimuli subsystem generates an analog signal of 100 Hz and a start
conversion clock with a frequency of 100 MHz. The ADC operates at the rate defined by the start
conversion clock frequency. A dashboard scope provides the behavior of the probability number over
time. A display block shows the current probability being measured by the subsystem. You must run
the simulation for a long enough period to see the probability number settled at the desired value, in
this case 1e-6.

NBits=10;
model1='flashAdc_metastability.slx';
open_system(model1);
open_system([bdroot,'/Scope']);
sim(model1);

Warning: An error occurred while evaluating "loc_createToolchain": Unrecognized
function or variable 'autosarroot'.
This custom registration is not loaded. 
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Effect of Metastability on Dynamic Performance of ADC

You can observe the effect of metastability on the dynamic performance of ADCs. The model shows
two setup of flash ADC systems: one with metastability and the other without. A postprocessing block
that takes in the impaired digital output and converts the NaNs to zeros. This is because the digital
output with NaNs cannot be recognized by a spectrum analyzer as valid signal for spectral analysis.
Attach an ADC AC measurement block to observe various performance metrics like SNR, ENOB,
noise floor and so on. The simulation results show the AC analysis causes a significant drop in
performance for ADC with metastability, as shown by the lower ENOB and higher noise floor.
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model2='flashAdc_metastability_Effect.slx';
open_system(model2);
sim(model2);

See Also
Sampling Clock Source | ADC AC Measurement | Flash ADC

More About
• “Analyzing Simple ADC with Impairments” on page 2-24
• “Compare SAR ADC to Ideal ADC” on page 2-47
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Design and Evaluate Interleaved ADC
This interleaved ADC model highlights some of the typical impairments introduced by data converters
and their effects on a larger system.

Model

In this example, interleave two simple ADCs based on the model “Analyzing Simple ADC with
Impairments” on page 2-24 to create the equivalent of one ADC operating at 2X the individual ADC
sampling rate. Use a two-tone test signal at 200 MHz and 220 MHz as the input to verify the
distortion introduced by the ADC operation.

model = 'interleaved_adc';
open_system(model)
set_param([model '/ADC_1 at 1G SPS'],'jitter','off');
set_param([model '/ADC_1 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_1 at 1G SPS'],'quantization','off');

set_param([model '/ADC_2 at 1G SPS'],'jitter','off');
set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_2 at 1G SPS'],'quantization','off');

set_param([model '/Offset Delay'],'DelayTime','.5/Fs_adc');
set_param([model '/Two Tone Sine Wave'],'Amplitude','.5');
set_param([model, '/Input Switch'], 'sw', '1');

sim(model)
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To bypass the impairments, use appropriate switch positions inside the ADC blocks. The ADC
behavior is purely ideal. The two ADCs in the top-level model are identical with the exception that the
noise generators in each ADC have different seeds to make the noise uncorrelated.

Each ADC operates at 1 GHz rate, set by the MATLAB® variable Fs_adc defined in the initialization
callback of this model. The operating rate of the ADCs is indicated by the green signals and blocks in
the diagram. The input signal of the second ADC is delayed by an amount equal to half a period of the
ADC sampling frequency.

Timing Imperfection

The precision of the timing between the individual ADCs is critical. To see the effect of a timing
mismatch, open the Offset Delay block and simply add 10 ps to the delay value.

set_param([model '/Offset Delay'],'DelayTime','.5/Fs_adc + 10e-12');

The 10 ps error causes a significant degradation of the ADC performance, even though both ADCs are
perfectly ideal. To compensate for the performance degradation, some form of drift compensation is
necessary. For more information, see SP Devices: spdevices.com/index.php/interleaving

sim(model)
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Effect of Aperture Jitter

Remove the fixed offset of 10 ps and enable the aperture jitter impairment in each of the ADC
subsystems.

set_param([model '/Offset Delay'],'DelayTime','.5/Fs_adc');
set_param([model '/ADC_1 at 1G SPS'],'jitter','on');
set_param([model '/ADC_2 at 1G SPS'],'jitter','on');

The noise around the two-tone test signal at 200 MHz is expected, as a direct result of the ADC jitter.
The additional noise around 800 MHz is the result of interleaving two uncorrelated noise sources.

sim(model)
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Effect of Nonlinearity

Remove the jitter impairment and activate the nonlinearity impairment in both ADCs.

set_param([model '/ADC_1 at 1G SPS'],'jitter','off');
set_param([model '/ADC_2 at 1G SPS'],'jitter','off');
set_param([model '/ADC_1 at 1G SPS'],'nonlinearity','on');
set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','on');

The spectrum now shows 3rd order IMD products around two tones and harmonically related spurs
around the 600 MHz region.

sim(model)
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Even though the ADC nonlinear effects are identical and create exactly the same odd order
components, there is actually some cancellation of terms. If just one nonlinearity is enabled, the
resulting spectrum is worse than when both ADCs are nonlinear.

set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','off');
sim(model)
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Effect of Quantization and Saturation

Remove the linearity impairment and activate the quantization. The quantizer is set to 9 bits, and the
signal level is close to the full scale of +/-1, which can be seen in the input Time Scope.

set_param([model '/ADC_1 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_2 at 1G SPS'],'nonlinearity','off');
set_param([model '/ADC_1 at 1G SPS'],'quantization','on');
set_param([model '/ADC_2 at 1G SPS'],'quantization','on');

The spectrum shows the noise floor increasing as an effect of quantization.

sim(model)
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Multiply the two tone test signal by a factor of 1.2. The increased amplitude saturates each ADC,
producing a clipped waveform and a dirty spectrum.

set_param([model '/Two Tone Sine Wave'],'Amplitude','.5*1.2');
sim(model)
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ENOB, SFDR, and Other Single Tone Measurements

ADCs are often characterized by their Effective Number of Bits (ENoB), Spurrious-Free Dynamic
Range (SFDR), and other similar measurements.

These quantities are derived from a single tone test. To change the ADC's input from the Two Tone
Sine Wave source to the Single Tone Sine Wave source and back, double click on the Input Switch.
This test uses a single sine wave with a frequency of 200 MHz.

set_param([model, '/Input Switch'], 'sw', '0');

The ADC AC Measurement block from the Mixed-Signal Blockset™ measures conversion delay,
SINAD (the ratio of signal to noise and distortion), SFDR, SNR (Signal to Noise Ratio), ENOB and the
ADC's output noise floor.

set_param([model, '/ADC AC Measurement'], 'Commented', 'off');

This block requires a rising edge on its start and ready ports for every conversion that the ADC
makes. In this model, these are provided by a 4 GHz pulse generator. To use the ADC AC
Measurement block in this model, uncomment the block by right clicking on it and selecting
"Uncomment" from the menu. The expected ENOB from a dynamic range of 2 and a least significant
bit value (quantization interval) of 2^-8 is 9 bits.

sim(model);
disp(interleaved_adc_output)

           SNR: 316.1774
          SFDR: 58.7451
         SINAD: 58.7451
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          ENOB: 9.4660
    NoiseFloor: -351.8345
      MaxDelay: 0
     MeanDelay: 0
      MinDelay: 0

Copyright 2019 The MathWorks, Inc. All rights reserved.

See Also
ADC AC Measurement

More About
• “Analyzing Simple ADC with Impairments” on page 2-24
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Design and Evaluate Successive Approximation ADC Using
Stateflow

This Successive Approximation Register (SAR) ADC model demonstrates a 12 bit converter with a
circuit-level DAC model.

Successive Approximation ADCs typically have 12 to 16 bit resolution, and their sampling rates range
from 10 kSamples/sec to 10 MSamples/sec. They tend to cost less and draw less power than
subranging ADCs.

Model

Open the system MSADCSuccessiveApproximation.

model = 'MSADCSuccessiveApproximation';
open_system(model)

Set the switches to their default positions, selecting the two-tone source and the ideal DAC model.

set_param([model '/Source'],'sw','1');
set_param([model '/DAC'],'sw','0');

The top-level model consists ofa testbench and the device under test. The testbench includes the test
signal generators and the time domain scopes and spectrum analyzer for measurement purposes. The
device under test, highlighted in blue in the model, contains a Track and Hold:, a Comparator, control
logic, and charge scaled DAC.

The test signal is either a two-tone sine wave or a constant DC level input. This test signal is sampled
and held at the ADC's output word rate of 10 MHz. The output of the sampler serves as one input to a
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comparator. The second comparator input is the DAC output which is an incrementally stepped
reference level. If the output of the sampler is greater than or equal to the DAC output, then the
comparator outputs a logical 1. When this happens, the corresponding bit of the output is set to
logical 1. Otherwise, the comparator outputs a logical 0 which does not increment the ADC output
word. This single comparator is only place in the successive approximation converter where analog is
converted to digital.

sim(model);

Define the number of bits ( NBits ) and ADC conversion rate ( Fs ) in the MATLAB® workspace. The
ADC operating clock rate is determined from Nbits and Fs .

Nbits = 12;
Fs = 1e7;
ADC_clock = Fs*(Nbits+2);

Successive Approximation Control Logic

This model uses Stateflow to model the successive approximation control logic. The state-machine
serves as a sequencer that starts by outputting a count corresponding to midscale which in this case
is 0 volts. The state-machine then performs a binary search of one bit position at a time to find the
count corresponding to the closest approximation to the sampled input signal within 12 bits of
resolution.

open_system([model '/Succesive Approximation Logic'],'force')
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On a particular bit, if the comparator outputs a 1, then that bit is set. Otherwise that bit position is
cleared. Because there are 12 bits, it takes 12 clock cycles at the bit rate clock to complete the
conversion for a given input sample.

In this model, the bit rate clock denoted by block labeled ADC Internal Clock runs at 140 MHz. This
clock is 14 times faster than the sample rate clock denoted by the block labeled Conversion Clock in
the upper left corner of the model. After the control logic sequences from bit 11 down to bit 0 the
end-of-conversion (EOC) line goes high, telling the DAC circuitry to reset.

DAC Circuit-Level Implementation

The circuit-level DAC uses a multi-stage charge-scaled array of capacitors in a split-array format. This
architecture provides several advantages including reduced area or parts count, a built-in sample and
hold, low power dissipation, and a relatively small range of capacitance values as would be required
without a split-array.

There are two versions of a digital to analog converter (DAC) in this model, one at the circuit-level
and the second representing ideal DAC behavior. The ideal DAC block takes the input count and
multiplies it by

to generate the output comparison voltage [1].

Set the switch to enable the circuit-level DAC model. Run the model.

set_param([model '/DAC'],'sw','1');
sim(model);
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This particular charge-scaled array uses  binary-weighted capacitors per stage with a total
of  stages providing a total of  bits of DAC resolution. The binary-weighted
capacitors per stage have a value of , , and . The larger the capacitance corresponds to a
higher bit position within a particular stage. For example, setting the low side of the  capacitor
high has 4 times the output voltage impact relative to setting the low side of the  capacitor high.

If you change the value of the variable Nbits, the physical number of bits of the converter, you need to
modify the circuit level implementation of the DAC. The ideal DAC implementation and the control
logic are parametrized with respect to the number of bits.

open_system([model '/Circuit Level 12 Bit DAC'],'force')
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Each stage is separated by a scaling capacitor with value . The scaling capacitor serves the
purpose of attenuating the output voltage of each stage's output voltage. The further the stage is
from the DAC output node, the more it is attenuated. The attenuation is 8x per scaling capacitor
which corresponds to .

The three MSBs are closest to the output, bits 0, 1, and 2 while there LSBs, bits 10, 11, and 12 are
furthest away. At any given time, the DAC is in one of two modes. It is either generating an output
voltage based on a particular input count or it is being reset when the EOC line goes high. When EOC
goes high, the low side of each capacitor in the DAC is switched to ground rather than data, thus
draining the capacitors of charge in preparation for the next approximation. This effectively drains
the capacitive network of charge preparing it for the next input sample.

Measurement Testbench

The ADC Testbench block from the Mixed-Signal Blockset™ can provide a performance analysis of the
ADC.

In DC mode, the ADC Testbench tests the linearity of the ADC. The test result is used to generate
offset and gain error measurements which are displayed on the block mask. The full test results are
available for export or visualization via the buttons on the ADC Testbench block mask.

bdclose(model);
model = 'MSADCSAR_DC';
open_system(model);
sim(model);

2 ADC Featured Examples

2-20



 Design and Evaluate Successive Approximation ADC Using Stateflow

2-21



The AC mode of the ADC Testbench provides insight into the frequency performance of the ADC,
including measurements like the ENoB (Effective Number of Bits), the maximum measured
conversion delay, and the noise floor of the converter. These measurements are displayed on the block
icon after simulation and are available for export via a button on the block mask.

model = 'MSADCSAR_AC';
open_system(model);
set_param([model '/DAC'],'sw','1');
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References

1 Haideh Khorramabadi UC Berkeley, Department of Electrical Engineering and Computer
Sciences, Lecture 15, page 38 <http://inst.eecs.berkeley.edu/~ee247/fa06/lectures/L15_f06.pdf>

Copyright 2019 The MathWorks, Inc. All rights reserved.

See Also
ADC AC Measurement | ADC DC Measurement | Sampling Clock Source

More About
• “Compare SAR ADC to Ideal ADC” on page 2-47
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Analyzing Simple ADC with Impairments
This example shows how to implement a basic ADC using a Zero-Order Hold block as a sampler. This
simple ADC highlights some of the typical impairments introduced in an analog-to-digital converters
such as aperture jitter, nonlinearity, quantization, and saturation. This example shows how to
measure the effects of such impairments using a Spectrum Analyzer block and the ADC AC
Measurement block from the Mixed-Signal Blockset™. To better approximate real-world performance,
you can individually enable the impairments in the model.

model = 'MSADCImpairments';
open_system(model)

To observe the behavior of an ideal ADC, bypass the impairments using the switches. Set the Sine
Wave source to generate two tones as an input signal.

set_param([model '/Aperture Jitter'],'sw','1');
set_param([model '/Non Linearity'],'sw','0');
set_param([model '/Quantization and Saturation'],'sw','0');
set_param([model '/Sine Wave'],'Frequency', '2*pi*[47 53]*1e6');

Simulate the model and observe the expected clean output spectrum of the ADC.

sim(model);
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Effect of Aperture Jitter

Set the first switch to the down position. The Variable Delay block delays the signal sample-by-sample
by the amount on its td input. The Noise Source block generates a uniform random variable, which is
low-pass filtered by the Shape the jitter noise spectrum block before it arrives at the td input to the
Variable Delay. Use a shaped uniform noise distribution to represent the jitter. Notice that in this
model, the clock of the ADC is specified in the ideal zero-order hold block, and it is equal to 1/Fs,
where Fs is a MATLAB® variable defined in the model initialization callback and equal to 1.024 GHz.

set_param([model '/Aperture Jitter'],'sw','0');

As expected, the spectrum degrades because of the presence of the jitter.

sim(model);
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Effect of Nonlinearity

Set the second switch to the up position. This enables the ADC nonlinearity. A scaled hyperbolic
tangent function provides nonlinearity. Its scale factor, alpha, determines the amount of nonlinearity
the tanh applies to the signal. By default, alpha is 0.01.

set_param([model '/Non Linearity'],'sw','1');

The spectrum degrades because of the nonlinearity as higher order harmonics get generated.

sim(model);
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Effect of Quantization and Saturation

Set the third switch to the up position enabling the ADC quantization and hard saturation.

set_param([model '/Quantization and Saturation'],'sw','1');

The spectrum degrades because of the quantization effects. The noise floor raises as seen in the
spectrum.

sim(model);
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ADC AC Measurements

Use the ADC AC Measurement block in the Mixed-Signal Blockset™ to measure the noise
performance of the ADC and compute the effective number of bits (ENOB).

Use single sinusoidal tone as input to the ADC to measure other metrics.

bdclose(model);
model = 'MSADCImpairments_AC';
open_system(model);
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Ftest = 33/round(2*pi*2^8)*Fs;
set_param([model '/Sine Wave'],'Frequency', '2*pi*Ftest');

scopecfg = get_param([model '/Spectrum Scope'], 'ScopeConfiguration');
scopecfg.DistortionMeasurements.Algorithm = 'Harmonic';
scopecfg.FFTLength = '512';
scopecfg.WindowLength = '512';

sim(model);

The Aperture Jitter Measurement block from Mixed-Signal Blockset™ measures the average jitter
introduced on the signal to be approximately equal to 50 ps.

Additionally, use the spectrum analyzer to measure:

• Output Third Order Intercept Point (OIP3)
• Signal to Noise Ratio (SNR)
• Total Harmonic Distortion (THD)

Increase the factor alpha to increase the nonlinearity of the ADC and make the effects of nonlinearity
more evident on top of the noise floor. This is just for demonstration purposes.
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alpha = 0.8;

Use a two tone test signal as input to the ADC for the intermodulation measurements.

set_param([model '/Sine Wave'],'Frequency', '2*pi*[50e6 75e6]');

To enable distortion measurements in the spectrum analyzer, click on Distortion Measurement as
in the figure below and select Intermodulation as Distortion type.

scopecfg.DistortionMeasurements.Algorithm = 'Intermodulation';
scopecfg.FFTLength = '4096';
scopecfg.WindowLength = '4096';

sim(model);

The scope allows for the measurement of the third order products adjacent to the input signals, and
determines the output referred third order intercept point.

See Also
ADC AC Measurement | Aperture Jitter Measurement | Sampling Clock Source

2 ADC Featured Examples

2-30



More About
• “Compare SAR ADC to Ideal ADC” on page 2-47
• “Design and Evaluate Interleaved ADC” on page 2-7
• “Subranging ADC” on page 2-32
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Subranging ADC
This example shows how to model a 6-bit Subranging ADC with pipelining and an error correcting
second stage.

Subranging ADCs are typically faster than sigma delta and successive approximation ADCs but
provide less resolution. Typical sample rates are in the 10M sample/sec range, and typical resolution
is 8 to 16 bits. Additional stages and/or bits per stage yield higher resolutions.

Model

The subranging ADC is a two stage data converter. The first stage converter is a 3-bit Flash ADC. It
drives a 3-bit ideal DAC, which in turn drives the second stage. The second stage converter is 4-bit
flash ADC. The extra bit corrects the errors in the first ADC and improves conversion accuracy. The
sampling rate of the ADC is 100 MHz, and is defined in the model initialization callback by MATLAB®
variable Fs.

The model is based on the following Analog Devices tutorial: ADC Architectures V: Pipelined
Subranging ADCs.

The first ADC serves as a coarse 3 bit converter. The quantization error due to the first ADC is itself
quantized by the second ADC. To quantize this error, a 3-bit DAC converts the coarse ADC output to
an analog signal which is subtracted against the original analog input. The difference is the residue
signal. The residue signal is amplified and converted back to a digital signal by the second ADC. The
3 bit ADC output (MSBs) and the 4-bit ADC output (LSBs) are concatenated to form an overall 6 bit
unsigned ADC output.

model = 'subranging_adc';
load_system(model);

set_param(model, 'StopTime', '0.001');
set_param([model '/ADC AC Measurement'], 'Commented', 'off');
set_param([model '/ADC DC Measurement'], 'Commented', 'on');
set_param([model '/Subsystem/Buffer'], 'N', '0.001 * 2 * Fs')
set_param([model '/Time Scope'], 'TimeSpan', '1e-6');
set_param([model '/Time Scope'], 'TimeSpanOverrunAction', 'Scroll');

open_system(model);
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Dynamic Testing

This model uses one of two test sources. Use a sine wave for dynamic testing, e.g. ENoB, SNR, and
SFDR. Use a ramp signal for static testing, e.g. missing codes and nonlinearity quantifiers.

To determine SNR, ENOB and other dynamic characteristics of the subranging ADC, use the ADC AC
Measurement block from the Mixed-Signal Blockset™. Select he correct switch position to use the
Sine Wave as input source.

set_param([model '/Source Select'],'sw','1');
set_param([model '/Sine Wave'], 'Frequency', '2 * pi * 10e6');
set_param([model '/Sine Wave'], 'Amplitude', '0.5');
set_param([model '/Sine Wave'], 'Bias', '0.5');

open_system([model '/Time Scope']);
open_system([model '/Spectrum Analyzer']);
sim(model);
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Add another sine wave to the input to test intermodulation distortion. Observe and measure the
results using the spectrum analyzer.

set_param([model '/Sine Wave'], 'Frequency', '2 * pi * [10, 12] * 1e6');
set_param([model '/Sine Wave'], 'Amplitude', '0.25');
set_param([model '/Sine Wave'], 'Bias', '0.25');

sim(model);

2 ADC Featured Examples

2-34



 Subranging ADC

2-35



Missing Code Analysis

This example uses a histogram block to plot the frequency of occurrence of each ADC output code.
Uncomment the histogram by right-clicking on it and selecting Uncomment from the menu. Use the
Ramp block as the input source by setting the input switch to the proper position.

Because there is no need to collect multiple periodograms for DC measurements, change the
simulation time to 1.28e-5 s, then comment out the ADC AC Measurement block and the Spectrum
Analyzer. To collect quantitative data to go with the histogram, uncomment the ADC DC
Measurement block.

set_param([model '/Source Select'],'sw','0');
set_param(model, 'StopTime', '1.28e-5');
set_param([model '/Subsystem/Buffer'], 'N', '1.28e-5 * 2 * Fs')
set_param([model '/ADC AC Measurement'], 'Commented', 'on');
set_param([model '/ADC DC Measurement'], 'Commented', 'off');
w = warning('off', 'msblks:msblksMessages:ADCDataTruncated');
set_param([model '/Time Scope'], 'TimeSpan', '1.28e-5');
set_param([model '/Time Scope'], 'TimeSpanOverrunAction', 'Wrap');

close_system([model '/Spectrum Analyzer']);
open_system([model '/ADC Output Histogram']);
sim(model);
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You can observe how the second stage corrects errors from the first by adding Offset Error and Gain
Error in the impairments tab of the MSB ADC. Any fraction of an LSB introduced as a form of gain or
offset error results in an imbalance or missing code in the ADC output histogram. Anything other
than a flat histogram with a sawtooth input signifies some amount of non-ideal ADC behavior in the
form of integral non-linearity, differential non-linearity, or missing codes.

Errors of up to 1 LSB in the MSB ADC are corrected by the extra bit of the LSB ADC. Larger errors
influence the output.

set_param([model '/MSB ADC'],'OffsetError','0.5');
set_param([model '/MSB ADC'],'GainError','0.3');

sim(model);
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View the results of the ADC DC Measurement block by clicking the Plot measurement results button
in the block mask.
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ADC Testbench

Verify that the results of your tests are due only to properties of the ADC rather than of the input
signals or output processing with the ADC Testbench. Connect the inputs and outputs of the
converter to the inputs and outputs of the ADC Testbench and run the simulation. The results of the
test will show up on the block mask once you run the simulation.

model = 'subranging_adc_testbench';
open_system(model);
warning(w.state, 'msblks:msblksMessages:ADCDataTruncated');
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See Also
ADC AC Measurement | ADC DC Measurement | ADC Testbench | Flash ADC

More About
• “Analyzing Simple ADC with Impairments” on page 2-24
• “Effect of Metastability Impairment in Flash ADC” on page 2-2
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Measuring Offset and Gain Errors in ADC
This example shows how offset error and gain error are calculated and how each affects the transfer
curve of an ADC. Offset error and gain error characterize part of the linearity error in an ADC.

Offset error is the difference between the center of the least significant code and the center of the
same code on an ideal ADC with the same number of bits. Offset error is usually reported in units of
the least significant bit (LSB) of the converter. One LSB is equivalent to the converter's quantization
interval.

Gain error in LSB is the difference between the center of the most significant code after offset error
correction and the center of the same code on an ideal ADC with the same number of bits.

Due to the difficulty in determining the precise location of the center of a code with a non finite
boundary, these values are most commonly measured with respect to the first and last threshold of
the converter, respectively.

Units for Offset Error and Gain Error

The unit , which is used in this example, is defined as:

Thus, an error in  (volts) translates into  as follows:

where  is the full scale range of the ADC and  is the number of bits of the ADC.

Linearity errors are also commonly reported in normalized units with respect to the full scale range:

Another unit sometimes used for linearity errors used is percent full scale. Percent full scale is
defined as normalized units multiplied by 100:

Calculate Offset Error and Gain Error

Use a 3-bit ADC with dynamic range [-1 1]. Define an offset error of 1 LSB and a gain error of 1 LSB.

Nbits = 3;
Range = [-1 1]; % ADC Full Scale Range
OffsetError = 1;
GainError = 1;
LSB = (max(Range) - min(Range)) / (2^Nbits - 1);
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The digital codes from the ideal ADC are identical to those from the experimental ADCs.

[TC0Analog, TC0Digital] = og2tc(Nbits, Range, 0, 0); % Ideal ADC Transfer Curve
TC1Analog = og2tc(Nbits, Range, OffsetError, 0); % Offset Error Only
TC2Analog = og2tc(Nbits, Range, 0, GainError); % Gain Error Only
TC3Analog = og2tc(Nbits, Range, OffsetError, GainError); % Both Offset Error and Gain Error
plotAdcTcForExample(TC0Digital, TC0Analog, TC1Analog, TC2Analog, TC3Analog, Nbits);

The sum of offset error and gain error is known as full-scale error. In monopolar converters zero
error, essentially offset error defined at analog level 0, is identical to regular offset error. In bipolar
converters such as those above, offset error and zero error are different quantities.

Use of Linearity Errors as Impairments

Compare a flash ADC with offset and gain error to one with no impairments.

model = 'OffsetGainExample';
open_system(model);
open_system([model '/Scope']);
sim(model);
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The ADC DC Measurement block confirms the values of the impairments to within a margin of error
determined by the sample rate of the system. The offset error and gain error were both entered as 1
LSB. Offset error was measured as 1.08 LSB and gain error was measured as 0.97 LSB. Errors in
these measurements are due to the converter not sampling exactly at its threshold values. The
maximum expected error in LSB is:

where  is the slope of the input ramp/sawtooth signal in LSB/s, and  is the ADC's conversion start
frequency.

See Also
ADC DC Measurement | Flash ADC
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Compare SAR ADC to Ideal ADC
This example shows a comparison of the SAR ADC from the Mixed-Signal Blockset™ to the ideal ADC
model with impairments presented in “Analyzing Simple ADC with Impairments” on page 2-24.

This model compares SAR ADC and an equivalent ideal ADC model. To scale the integer output of the
SAR ADC to match the floating point output of the ideal ADC, use an output gain and offset. For the
comparison to be valid, both ADCs must sample their inputs and then provide their outputs
concurrently.

The ideal ADC model is composed of a Quantizer block, a saturation block and a Zero-Order Hold
block. The quantization interval is set to be 1 LSB of the SAR ADC. The limits of the saturation block
match the SAR ADC's Input range parameter, [-Vref Vref] / 2. The Zero-Order Hold and both
Sample and Hold blocks sample at Fs, though they do so at differnt times.

The SAR ADC outputs an unsigned, 16-bit integer. The minimum value of the converter's output is 0
and maximum value is 2^ NBits - 1. This is less than the maximum value of the integer as long as the
integer has more bits than the converter. The Bias and Scale Results to Volts blocks scale the former
integer onto the same range as the converter input and the output of the ideal ADC, by default -
Vref / 2 to Vref / 2.

model = 'SARIdealCompare';
open_system(model);

The Time Scope block shows the difference between the two outputs on the left and the two outputs
themselves on the right.

open_system([model '/Time Scope']);
sim(model);
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The Spectrum Analyzer block shows the spectra of the two outputs.

close_system([model '/Time Scope']);
open_system([model '/Spectrum Analyzer']);
sim(model);
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You can substitute the Flash ADC for the SAR ADC in this model to measure its performance.

See Also
Flash ADC | SAR ADC

More About
• “Design and Evaluate Successive Approximation ADC Using Stateflow” on page 2-16

 Compare SAR ADC to Ideal ADC

2-49



ADC Linearity Measurement Using Histogram
Statistical measurement of ADC Linearity is popular in physical systems due to its noise tolerance
and relative simplicity of implementation in a physical environment. This example covers problems
inherent to statistical linearity measurements and some possible solutions for implementing these
measurements in Simulink®.

The Model

A histogram-based linearity measurement can be broken into five sections:

1 Stimulus
2 Device Under Test (DUT)
3 Preprocessing
4 Histogram Computation
5 Linearity Measurement

The problems inherent to the statistical method occur primarily in the Stimulus and Preprocessing
sections. The stimulus signal needs to be uniform over the ADC's input to give a flat histogram for an
unimpaired converter, while the preprocessing needs to ensure that exactly one period of the
stimulus is binned by the histogram at a time.

Alternatively, the stimulus frequency can be nonuniform but the histogram must be manipulated
using the PDF of the nonuniform input so as to remove the influence of the nonuniformity on the
result.

s = warning('off', 'Simulink:blocks:DivideByZero');
model = 'histogramLinearityExample';
open_system(model);
set_param([model '/Flash ADC'], 'EnableImp', 'off');

The sawtooth stimulus frequency automatically adapts to different combinations of simulation
runtime and converter number of bits.
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 and  are defined in Range,  is defined in the model parameter StopTime,  is
defined by Fs and  is defined by Nbits.  serves to prevent a frequency of 0 in the
case of a non-finite simulation time. Otherwise, the sawtooth period takes the entire simulation time.

Buffering

In this model, the samples are buffered separately from the histogram computation for two reasons.
First, it is important that the histogram updates at an integer multiple of the stimulus period. This
ensures that the histogram has the correct shape. Second, the number of samples per period of the
sawtooth stimulus is dependant on its frequency and the frequency of the conversion start signal,
which is the sampling frequency. Therefore, the number of samples to buffer is the sample frequency
divided by the sawtooth frequency.

The buffer block causes its own problem while ensuring histogram uniformity. The initial output of the
buffer is passed to the histogram at the start of simulation, effectively a buffer full of zeros all
determined by an initial condition.

model3 = 'histogramInitialCondition';
load_system(model3);
sim(model3);
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The resulting histogram is corrupted by the massive spike at 0, due to the propagation of the initial
condition.

The MATLAB Function block in the Histogram section keeps the histogram disabled until the next
buffer, the first one filled with simulation data, arrives at the histogram. Therefore, this prevents the
final histogram from being dependent on initial conditions.

open_system(model);
set_param([model '/Flash ADC'], 'EnableImp', 'off');
sim(model);

Input Uniformity

A ramp or sawtooth input provides a linear sweep of all of the values over the ADC's dynamic range.

However, due to threshold placement in ADCs, an ideal ADC's transfer curve is not centered in its
dynamic range; the ideal transfer curve is left shifted by 0.5 LSB. Therefore, the first threshold is at
0.5 LSB and the last threshold is 1.5 LSB lower than the maximum dynamic range. Compensate for
this effect by adding a -0.5 LSB bias to the stimulus.

More severe problems occur with converters that have large offset and/or gain errors. Specifically, if
the offset error is lower than -1 LSB or the full scale error (the sum of offset and gain error) exceeds
1 LSB, some codes at the bottom or top of the transfer curve (respectively) will be measured as
missing, regardless of their actual functionality. Knowing this, statistical linearity measurement
techniques should only be applied after offset and gain errors have been corrected.

set_param([model '/Flash ADC'], 'EnableImp', 'on');
set_param([model '/Flash ADC'], 'OffsetError', '3');
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set_param([model '/Flash ADC'], 'GainError', '2');
sim(model);

To measure the full transfer curve of an ADC with large offset and/or full scale errors in Simulink®,
use the ADC DC Measurement block or the ADC Testbench. Configuration of the stimulus to cover the
whole ADC transfer curve will not effect these blocks' results the way it will effect the histogram.

model2 = 'flashWithTestbench';
open_system(model2);
set_param([model2 '/Flash ADC'], 'EnableImp', 'off');
set_param([model2 '/Flash ADC'], 'OffsetError', '3');
set_param([model2 '/Flash ADC'], 'GainError', '2');
sim(model2);
msblks.ADC.adcDcMeasurementPlot([model2 '/ADC DC Measurement']);
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Linearity Measurement

With the input and preprocessing conditions met, the histogram provides an excellent visual
representation of the linearity of the data converter. A set of mathematical operations applied to this
histogram yield measurements for both DNL and INL.

set_param([model '/Flash ADC'], 'EnableImp', 'on');
set_param([model '/Flash ADC'], 'OffsetError', '0.25');
set_param([model '/Flash ADC'], 'GainError', '0.25');
open_system([model '/Differential Nonlinearity']);
open_system([model '/Integral Nonlinearity']);
sim(model);
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open_system([model '/Hist2DNL']);

INL is subsequently computed from DNL.

open_system([model '/DNL2INL']);
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Endpoint INL computed in this manner is equivalent to the endpoint INL computed by the ADC DC
Measurement block, though the ADC DC Measurement block does not report full scale DNL.

open_system(model2);
set_param([model2 '/Flash ADC'], 'EnableImp', 'on');
set_param([model2 '/Flash ADC'], 'OffsetError', '0.25');
set_param([model2 '/Flash ADC'], 'GainError', '0.25');
sim(model2);
msblks.ADC.adcDcMeasurementPlot([model2 '/ADC DC Measurement']);
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warning(s.state, 'Simulink:blocks:DivideByZero');
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Mixing Analog and Digital Signals
Featured Examples

• “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2
• “Digital Timing Using Fixed Step Sampling” on page 3-6
• “Logic Timing Simulation” on page 3-10
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Digital Timing Using Solutions to Ordinary Differential
Equations

This example shows how to model a three stage ring oscillator using models defined by ordinary
differential equations (ODE).

This example is the third of three examples that use a three stage ring oscillator model to explore the
range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit.

The first two examples in the sequence, “Logic Timing Simulation” on page 3-10 and “Digital Timing
Using Fixed Step Sampling” on page 3-6, contain background information about this example.
Read them first, in sequence, if you have not already done so.

This model uses blocks defined by ODEs, and depends on the services of an ODE solver. For each
stage, the zero crossing detection capabilities of a Compare To Constant block are used to produce a
saturated input to the inverter. The inverter output is converted from Boolean to double to drive a
Transfer Function block. The Transfer Function block defines the shape of the inverter output
transitions.

Load the ODE-based model and update the model to display sample times.

open_system('OdeWaveform');
set_param(gcs,'SimulationCommand','update');

Continuous Time Model Using Exponential Decay

In this section, use a single pole response to evaluate the ring oscillator output when the inverter
output is modeled as the response of an RC circuit.

For this section, the Transfer Function blocks are configured for a single pole response. The pole for
one of the logic stages is set to a slightly different value than for the other two stages so that the
model will enter the correct mode of oscillation.
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The solver selection is set to auto, with a Relative Tolerance of 1e-9.

Run the ODE-based model with the single pole rise/fall response.

sim('OdeWaveform');

Continuous Time Model with Nearly Constant Slew Rate

In this section, model the response of the ring oscillator stages using a continuous time Transfer
Function block with a fourth order Bessel-Thompson response to approximate a constant slew rate
response.

Set the configuration for the fourth order Bessel-Thompson rise/fall response.

den = getBesselDenominator(3e9);
set_param('OdeWaveform/Transfer Fcn','Denominator',mat2str(den));
set_param('OdeWaveform/Transfer Fcn1','Denominator',mat2str(den));
den = getBesselDenominator(3.1e9);
set_param('OdeWaveform/Transfer Fcn2','Denominator',mat2str(den));

Run the modified ODE-based model. Note the slight rounding of the onset of the switching edges,
similar to the waveforms produced in the “Digital Timing Using Fixed Step Sampling” on page 3-6
example.

sim('OdeWaveform');
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Continuous Time with Solver in Auto Mode

In this section, change the solver configuration and observe the change in results.

For circuits which are adequately described by linear, time invariant models, the combination of fixed
step and variable step discrete sample times, as described in the Combined Fixed Step and Digital
Timing section may be the simplest way to get reliable results. However, for circuits which must be
modeled by a nonlinear or time-varying model, the ODE-based solution is the only viable option. In
such cases, you should vary the maximum error tolerance, maximum step size or choice of solver in
the solver configuration dialog and compare the results to the behavior you expect.

Maintain the model configuration of the previous section but change the solver's Relative Tolerance
from 1e-9 to auto.

set_param('OdeWaveform','RelTol','auto');

Run the model with the auto solver setting. Observe both the change in period of oscillation and in
wave shape.

sim('OdeWaveform');
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See Also

More About
• “Logic Timing Simulation” on page 3-10
• “Digital Timing Using Fixed Step Sampling” on page 3-6
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Digital Timing Using Fixed Step Sampling
This example shows how to model a three stage ring oscillator using a combination of fixed step and
variable step discrete sample times.

This example is the second of three examples that uses a three stage ring oscillator model to explore
the range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit.

The first example in the sequence, “Logic Timing Simulation” on page 3-10 contains background
information about this example. First read that example if you have not already done so. After
completing this example, you can move forward with the “Digital Timing Using Solutions to Ordinary
Differential Equations” on page 3-2 example.

For each stage of the ring oscillator, the Logic Decision block converts the input into a saturated
variable step discrete signal and the Slew Rate block converts the output to an analog fixed step
discrete signal. Some delay in the Logic Decision block is unavoidable; however most of the delay is
introduced by the Slew Rate block.

The Logic Decision block generates a variable step discrete sample at its output in response to any
threshold crossing it detects at its input.

For a fixed step discrete input sample time, the threshold crossing time is determined by linear
interpolation between the two most recent samples. The output sample is delayed by one sample
because the block does not have access to the fixed in minor step services of an ODE solver. In the
modeling of a circuit, this delay must represent either the delay of input stages in a multi-stage
transistor circuit or RC transmission line routing delay.

For a fixed step input, the precision of the threshold crossing time reported by the Logic Decision
block depends on the ratio of the spectral content of the signal to the Nyquist frequency defined by
sample rate. For a sine wave at 0.25 times the Nyquist frequency (8x oversampling), the maximum
error in the reported threshold crossing time is 1% of a sample interval. For 0.1 times the Nyquist
frequency, the maximum error is 0.15% of a sample interval. For applications requiring greater
precision, such as evaluating low level phase noise at the output of a PLL, an approach that depends
only on variable step sampling may produce more precise results.

For a variable step input, the output of the Logic Decision block is delayed by the minimum delay
parameter for the block.

The Slew Rate block implements a linear time invariant transfer function that can be applied to either
a variable step or fixed step input signal, producing a fixed step discrete output signal with a sample
time that was set by the Slew Rate block. The delay of the Slew Rate block is a mixture of:

• Constant delay such as might occur in a multi-stage transistor circuit or RC routing delay
• Nearly constant slew rate such as would be typical of a saturated transistor driving a capacitive

load
• Exponential decay such as would be typical of an RC circuit

Load the mixed analog/digital model and update the model to display sample times.

open_system('AnalogWaveform');
set_param(gcs,'SimulationCommand','update');
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Slew Rate Block in Default Sampling Mode

In this section, use the Default sampling mode of the Slew Rate block to model the response of a
circuit whose slew rate is nearly constant, such a saturated transistor driving a capacitive load.

For this section, the Slew Rate blocks are configured to their Default sampling mode, which
maximizes the portion of the delay due to nearly constant slew rate (saturated transistor) and
minimizes the delay due to constant delay or exponential decay.

The delay for one logic stage is set to a slightly different value than for the other stages so that the
model enters the correct mode of oscillation.

Since the model contains no differential equations, the solver is Variable Step Discrete.

Note in the response that the onset of the switching edges is slightly rounded. In a real circuit, this
would typically be due to the RC response of the routing.

Run the mixed analog/digital model with default sample times.

sim('AnalogWaveform');
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Slew Rate Block in Advanced Sampling Mode

In this section, use the Advanced sampling mode of the Slew Rate block to model circuits whose
response is primarily a decaying exponential.

Choose the Advanced mode for the Slew Rate block sampling and set the Maximum frequency of
interest to a value that is high enough to make the delay of the Slew Rate block due primarily to
exponential decay. This choice also minimizes the delay of the Logic Decision block.

Note in the response that the onset of the switching edges is relatively sharp.

Configure the mixed analog/digital model to approximate single pole response.

% Slew Rate1
set_param('AnalogWaveform/Slew Rate1','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate1','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate1','RisePropDelay','92e-12');
set_param('AnalogWaveform/Slew Rate1','RiseTime','15.5e-11');
% Slew Rate2
set_param('AnalogWaveform/Slew Rate2','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate2','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate2','RisePropDelay','92e-12');
set_param('AnalogWaveform/Slew Rate2','RiseTime','15.5e-11');
% Slew Rate3
set_param('AnalogWaveform/Slew Rate3','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate3','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate3','RisePropDelay','95e-12');
set_param('AnalogWaveform/Slew Rate3','RiseTime','16e-11');

Update the diagram to show the revised sample times in the sample time legend.
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set_param(gcs,'SimulationCommand','update');

Run he mixed analog/digital model with emphasized one pole response.

sim('AnalogWaveform');

See Also
Logic Decision | Slew Rate

More About
• “Logic Timing Simulation” on page 3-10
• “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2
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Logic Timing Simulation
This example shows how to use the Variable Pulse Delay block to create accurate timing models of
logic circuits.

This example is the first of three examples that use a three stage ring oscillator model to explore the
range of options for simulating the analog applications of digital circuits. The delays in each stage
determine the ring oscillator's output frequency, making the accurate modeling of these delays
essential to the simulation of the circuit. This first example shows how to produce digital waveforms
with accurate timing by using variable step discrete sampling.

The second and third examples both show how to produce analog waveforms with accurate shape and
timing. The “Digital Timing Using Fixed Step Sampling” on page 3-6 example shows how to model the
three stage ring oscillator using a combination of fixed step and variable step discrete sample times.
The “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2 shows modelling
the three stage ring oscillator using models defined by ordinary differential equations (ODE). You
should study this example before studying the other two.

The delays in this model are introduced by the Variable Pulse Delay blocks from the Utilities library of
the Mixed-Signal Blockset™, with the delay defined by a separate input to the block. The initial
output values for the Variable Pulse Delay blocks are set to guarantee oscillation. The initial output
values for two of the blocks are kept at the default value of zero while the initial output for the third
block is set to one.

The oscilloscope is configured to display the samples as a scatter graph, with no rendering between
samples. Different sample times make different assumptions about the signal value between samples
such as:

• Zero Order Hold (ZOH) — The signal value is assumed to equal the value of the most recent
sample.

• First Order Hold (FOH) — The signal value is assumed to vary linearly from one sample to the
next.

• Nyquist limited — The signal is assumed to have zero spectral content above a frequency equal to
one half of a fixed sample rate.

• Taylor series — For each major sample step, an ODE solver produces a polynomial that
approximates the signal value over that time interval.

The oscilloscope block bases its rendering on these assumptions. You must focus on the samples
themselves and understand explicitly the assumptions that different sample times make.

The samples displayed on the oscilloscope show a single sample for each logic switching event. These
samples are generated by the Variable Pulse Delay blocks. Every time a Variable Pulse Delay block
receives a sample, it generates a new event at a time equal to the sample time plus the value at the
delay input port.

As indicated by the sample time color coding, the output sample time for the inverters is Fixed In
Minor Step (FIM). This means that each inverter produces an output sample value for every major
sample time in the model, regardless whether or not that sample time is used at an input port of the
gate.

This FIM behavior is typical of most logic blocks; however you should pay special attention to sample
time propagation in triggered subsystems such as D flip-flops. If the trigger input uses a fixed step
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discrete sample time, then any input which is not synchronous with that sample time may not be
processed correctly. The triggered subsystem can be forced to operate in FIM mode by triggering it
with a variable step discrete trigger such as would be produced by the Variable Pulse Delay block or
the Logic Decision.

Since the model does not contain any differential equations, the solver is Variable Step Discrete.

The Stage Delay is set to 100 ps, resulting in a half period of precisely 300 ps and a period of 600
ps, as demonstrated in the simulation output.

Load the logic timing model and update the model to display sample times.

open_system('LogicTiming');
set_param(gcs,'SimulationCommand','update');

Run the logic timing model.

%%.
sim('LogicTiming');
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See Also
Variable Pulse Delay

More About
• “Digital Timing Using Fixed Step Sampling” on page 3-6
• “Digital Timing Using Solutions to Ordinary Differential Equations” on page 3-2
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PLL Block Level Examples

• “Measuring VCO Phase Noise to Compare with Target Profile” on page 4-2
• “Finding Voltage Sensitivity and Quiescent Frequency of VCO” on page 4-4
• “Frequency Division Using Single Modulus Prescaler” on page 4-6
• “Frequency Division Using Dual Modulus Prescaler” on page 4-8
• “Frequency Division Using Fractional Clock Divider with Accumulator” on page 4-10
• “Frequency Division Using Fractional Clock Divider with DSM” on page 4-12
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Measuring VCO Phase Noise to Compare with Target Profile
This example shows how to validate the phase noise profile of a VCO device under test (DUT) using a
VCO Testbench.

Open the model vcoPhaseNoise . The model consists of a VCO block and a VCO Testbench.

open_system('vcoPhaseNoise.slx')

The voltage sensitivity of the VCO is set to 1.25e6 Hz, and the free running frequency is 2e9 Hz.

The testbencch is set to measure the Phase noise metric of the VCO in the Measurement option.
The Control voltage provided to the input of VCO is 4 V. So, the VCO operates at 2.5 GHz
frequency. Click the Autofill setup parameters button to automatically calculate the Sampling
frequency (Hz), Resolution bandwidth (Hz), and No. of spectral averages.

Run simulation for 2.4e-3 s, as recommended in the Block Parameters dialog box. Double click the
VCO Testbench block to open the Block Parameters dialog box. Click on the Plot measurement
button.
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The operating frequency matches the predicted frequency 2.5 GHz. The measured phase noise
profile also matches the target profile.
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Finding Voltage Sensitivity and Quiescent Frequency of VCO
This example shows how to find VCO metrics such as voltage sensitivity (Kvco) and quiescent
frequency or free running frequency (Fo).

Open the model vcoCharacteristics. The model consists of a VCO block and a VCO Testbench.

open_system('vcoCharacteristics.slx')

The testbench is set to measure the Kvco and Fo metric of the VCO in Measurement option. Range
of control voltage (V) provided to the input of VCO is set to [1 10].

Run the model for 1.2e-3 s. Double click the VCO Testbench to open the Block Parameters dialog
box. Click on the Plot measurement button.

From the simulation, the free running frequency is 2.5 GHz, and voltage sensitivity is 125 MHz/V.
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Frequency Division Using Single Modulus Prescaler
Open the model singleModulusPrescaler. The model consists of a Pulse Generator and a Single
Modulus Prescaler block.

open_system('singleModulusPrescaler.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.

Run the simulation for 2e-6 s. The frequency of the output signal is 1.25 MHz.
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Frequency Division Using Dual Modulus Prescaler
Open the model Dual_Modulus_Prescaler_Ex. The model consists of a Pulse Generator and a Dual
Modulus Prescaler block.

open_system('Dual_Modulus_Prescaler_Ex.slx')

The period of the incoming pulse at the clk in port is 1e-7 s. So, the incoming signal has a frequency
of 10 MHz. The Program counter value, Prescaler divider value, and Swallow counter value are
4, 1, and 1, respectively. The effective clock divider value of the dual modulus prescaler is 5.

Run the simulation for 1e-4 s. The frequency of the output signal is 2.002 MHz.
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Frequency Division Using Fractional Clock Divider with
Accumulator

Open the model fractionalClockDivider_w_Accumulator. The model consists of a Pulse
Generator and a Fractional Clock Divider with Accumulator block.

open_system('fractionalClockDivider_w_Accumulator.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.5.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.
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Frequency Division Using Fractional Clock Divider with DSM
Open the model fractionalClockDivider_w_DSM. The model consists of a Pulse Generator and a
Fractional Clock Divider with Accumulator block.

open_system('fractionalClockDivider_w_DSM.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has a frequency
of 2.5 MHz. The div-by value is set at 2.5. The clock divider uses a second order delta sigma
modulator.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.
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Data Converter Block Level Examples

• “Measure Offset and Gain Error of Binary Weighted DAC” on page 5-2
• “Measure AC Performance Metrics of Binary Weighted DAC” on page 5-4
• “Measure AC Performance Metrics of DAC Using DAC AC Measurement” on page 5-6
• “Measure DC Performance Metrics Using DAC DC Measurement” on page 5-8
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Measure Offset and Gain Error of Binary Weighted DAC
This example shows how to find the offset and gain errors of a binary weighted DAC block.

Open the model dac_dc_error. The model consists of a Binary Weighted DAC block and a DAC
Testbench.

model = 'dac_dc_error';
open_system(model)

The parameters under the General tab of the Binary Weighted DAC are kept at their default values.
The impairemtents are enabled in the Impairments tab, and the value of the offset error and gain
error are set to 2 LSB and 1 LSB, respectively.

In the DAC Testbench block, the Measurement option is set to DC. In the Setup tab, the Autofill
setup parameter button is used to automatically propagate the setup parameters from the DAC
block. In the Target Metric tab, the Autofill target metric button is used to automatically set the
target offset and gain errors from the DAC block. All other parameters are kept at their default
values.

Run the simulation for 6.4e-4 s. The measured offset and gain errors are 2.2 LSB and 0.66 LSB,
respectively.

The DAC transfer curve matches the best linear fit method. Using best fit method, maximum INL is
-0.79 LSB and maximum DNL is -1.2 LSB.
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Measure AC Performance Metrics of Binary Weighted DAC
This example shows how to find the AC performance metrics such as SNR, SINAD, SFDR, ENOB, and
noise floor of a binary weighted DAC block.

Open the model dac_ac_error. The model consists of a Binary Weighted DAC block and a DAC
Testbench.

model = 'dac_ac_error';
open_system(model)

The parameters of the Binary Weighted DAC are kept at their default values.

In the DAC Testbench block, the Measurement option is set to AC. In the Setup tab, the Autofill
setup parameter button is used to automatically propagate the setup parameters from the DAC
block. Show spectrum analyzer during simulation option is also checked.

Run the simulation for 9e-3 s.

sim(model)

ans = 

  Simulink.SimulationOutput:
                   tout: [178119x1 double] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 
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The measured AC performance metrics are displayed on the DAC Testbench block.
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Measure AC Performance Metrics of DAC Using DAC AC
Measurement

This example shows how to find the AC performance metrics such as SNR, SINAD, SFDR, ENOB, and
noise floor using a DAC AC Measurement block.

Open the model dac_ac_measure. The model consists of a Signal Generator, a Flash ADC, a Binary
Weighted DAC block, and a DAC AC Measurement block.

model = 'dac_ac_measure';
open_system(model)

The Flash ADC acts as the input to the Binary Weighted DAC. The ADC uses an internal start clock
whose Conversion start frequency (Hz) is 1e6 and RMS aperture jitter (s) is 1e-12. The input
analog frequency to the Flash ADC from the Signal Generator is 1000 Hz.

The Number of bits of the Binary Weighted DAC is set to 10. All other parameters are kept at their
default values.

The Digital signal frequency (Hz) of the DAC AC Measurement block is 1e3 and the Start
conversion frequency (Hz) is 1e6.

Run the simulation for 0.09 s.

sim(model)

ans = 

  Simulink.SimulationOutput:
                   tout: [1770563x1 double] 

     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 
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The measured AC performance metrics are displayed on the DAC AC Measurement block.

 Measure AC Performance Metrics of DAC Using DAC AC Measurement
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Measure DC Performance Metrics Using DAC DC Measurement
This example shows how to find the DC performance metrics such as offset error, gain error, INL, and
DNL.

Open the model dac_dc_measure. The model consists of a Signal Generator, a Flash ADC, a Binary
Weighted DAC block, and a DAC AC Measurement block.

model = 'dac_dc_measure';
open_system(model)

The Flash ADC acts as the input to the Binary Weighted DAC. The ADC uses an internal start clock
whose Conversion start frequency (Hz) is 1e6 and RMS aperture jitter (s) is 1e-12. The input
analog frequency to the Flash ADC from the Signal generator is 1000 Hz.

The Number of bits of the Binary Weighted DAC is set to 10. The impairemtents are enabled in the
Impairments tab, and the value of the offset error and gain error are set to 2 LSB and 1 LSB,
respectively. All other parameters are kept at their default values.

The Number of bits and Conversion start frequency (Hz) of the DAC DC Measurement block is
10 and 1e6, respectively.

Run the simulation for 0.02148 s. The measured AC performance metrics are displayed on the DAC
AC Measurement block.
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